1244 days ago

8 minutes

  • Boamah, E.F., Miller, M., Diamond, J., Grooms, W. and Daniel Baldwin Hess (2024). The long journey to equity: A comparative policy analysis of US electric micromobility programs. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2023.103789.
  • Delbosc, A. and Thigpen, C. (2024). Who uses subsidised micromobility, and why? Understanding low-income riders in three countries. Journal of Cycling and Micromobility Research. https://doi.org/10.1016/j.jcmr.2024.100016.
  • Guan, X., Israel, F., Heinen, E. and Ettema, D. (2024). Satisfaction-induced travel: Do satisfying trips trigger more shared micro-mobility use? Transportation research. Part D, Transport and environment. https://doi.org/10.1016/j.trd.2024.104185.
  • Huitao Lv, Zhang, F., Wong, M., Xing, Q. and Ji, Y. (2024). Activity-Based travel chain simulation for Battery-Swapping demand of electric micromobility vehicles. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.104022.
  • Manirathinam, T., Narayanamoorthy, S., Geetha, S., Ahmadian, A., Феррара, M., and Kang, D. (2024). Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.140372.
  • Shen, Y., Song, Y., Yu, Q., Luo, K., Shi, Z. and Chen, X. (2024). Enhancing carbon efficiency in shared micro-mobility systems: An agent-based fleet size and layout assessment approach. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2024.141209.
  • Zhang, F., Lyu, H., Xing, Q. and Ji, Y. (2024). Deployment of battery-swapping stations: Integrating travel chain simulation and multi-objective optimization for delivery electric micromobility vehicles. Energy. https://doi.org/10.1016/j.energy.2024.130252.
  • Bretones, A., and Marquet, O. (2023). Riding to health: Investigating the relationship between micromobility use and objective physical activity in Barcelona adults. Journal of Transport & Health. https://doi.org/10.1016/j.jth.2023.101588.
  • Cubells, J., Miralles-Guasch, C., and Marquet, O. (2023). Gendered travel behaviour in micromobility? Travel speed and route choice through the lens of intersecting identities. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2022.103502.
  • Diallo, A.O., Gloriot, T. and Manout, O. (2023). Agent-based simulation of shared bikes and e-scooters: the case of Lyon. Procedia Computer Science. https://doi.org/10.1016/j.procs.2023.03.047
  • Ecer, F., Küçükönder, H., Kayapınar Kaya, S. and Faruk Görçün, Ö. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2023.103667
  • Ghaffar, A., Hyland, M. and Saphores, J.-D. (2023). Meta-analysis of shared micromobility ridership determinants. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.103847.
  • Hong, D., Jang, S., and Lee, C. (2023). Investigation of shared micromobility preference for last-mile travel on shared parking lots in city center. Travel Behaviour and Society. https://doi.org/10.1016/j.tbs.2022.09.002.
  • Olabi, A.G., Wilberforce, T., Obaideen, K., et al. (2023). Micromobility: progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals. International Journal of Thermofluids. https://doi.org/10.1016/j.ijft.2023.100292.
  • Schumann, H., Haitao, H., Quddus, M (2023). Passively generated big data for micro-mobility: State-of-the-art and future research directions. Science Direct. https://doi.org/10.1016/j.trd.2023.103795
  • Zhang, C., Du,B., Zheng, Z., and Shen, J. (2023). Space sharing between pedestrians and micro-mobility vehicles: A systematic review. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.103629.
  • Zhang, F., Lyu, H., Ji, Y., Wong, M., Kuai, C. and Fan, J. (2023). Battery swapping demand simulation for electric micromobility vehicles considering multi-source information interaction and behavior decision. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137525.
  • Zhang, Y., Zhang, F., Ji, Y., Liu, Y. (2023). Understanding the illegal charging intention of electric micro-mobility vehicle users by extending the theory of planned behavior. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137491.
  • Zhang, Y., Zhang, F., Ji, Y. and Liu, Y. (2023). Understanding the illegal charging intention of electric micro-mobility vehicle users by extending the theory of planned behavior. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137491  
  • Adjei, F., Cimador, T., Severengiz, S. (2022). Electrically powered micro mobility vehicles in Ghana: transition process with a focus on social acceptance. Procedia CIRP. https://doi.org/10.1016/j.procir.2022.02.127.
  • Altintasi, O., and Yalcinkaya, S. (2022). Siting charging stations and identifying safe and convenient routes for environmentally sustainable e-scooter systems. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2022.104020.
  • Asensio, O.I., Apablaza, C.Z., Cade Lawson, M., Chen, E.W., and Horner, S.J. (2022). Impacts of micromobility on car displacement with evidence from a natural experiment and geofencing policy. Nature Energy. https://doi.org/10.1038/s41560-022-01135-1.
  • Bretones, A., and Marquet, O. (2022). Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review. Transport Policy. https://doi.org/10.1016/j.tranpol.2022.09.008.
  • Chicco, A. and Diana, M. (2022). Understanding micro-mobility usage patterns: a preliminary comparison between dockless bike sharing and e-scooters in the city of Turin (Italy). Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2022.02.057.
  • Dozza, M., Li, T., Billstein, L., Svernlöv, C., and Rasch, A. (2022). How do different micro-mobility vehicles affect longitudinal control? Results from a field experiment. Journal of Safety Research. https://doi.org/10.1016/j.jsr.2022.10.005.
  • Ignaccolo, M., Inturri, G., Cocuzza, E. et al. (2022). Developing micromobility in urban areas: network planning criteria for e-scooters and electric micromobility devices. Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2021.12.058.
  • Jiao, J., Lee, H.K., and Choi, S.J. (2022). Impacts of COVID-19 on bike-sharing usages in Seoul, South Korea. Cities. https://doi.org/10.1016/j.cities.2022.103849.
  • Li, H., Yuan, Z., Novack, T., Huang, W., and Zipf, A. (2022). Understanding spatiotemporal trip purposes of urban micro-mobility from the lens of dockless e-scooter sharing. Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2022.101848.
  • Liu, H-C., Lin, J-J. (2022). Associations of built environments with spatiotemporal patterns of shared scooter use: A comparison with shared bike use. Transport Policy. https://doi.org/10.1016/j.tranpol.2022.07.012.
  • Liu, L., and Miller, H.J. (2022). Measuring the impacts of dockless micro-mobility services on public transit accessibility. Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2022.101885.
  • Lu, F., Yan, L., and Huang, B. (2022). Site selection for shared charging and swapping stations using the SECA and TRUST methods. Energy Reports. https://doi.org/10.1016/j.egyr.2022.10.378.
  • Medina-Molina, C., Pérez-Macías, N., and Gismera-Tierno, L. (2022). The multi-level perspective and micromobility services. Journal of Innovation & Knowledge. https://doi.org/10.1016/j.jik.2022.100183.
  • Orozco-Fontalvo, M., Llerena, L. and Cantillo, V. (2022). Dockless electric scooters: A review of a growing micromobility mode. International Journal of Sustainable Transportation. https://doi.org/10.1080/15568318.2022.2044097.
  • Reck, J. D., Martin, H., and Axhausen, K. W. (2022). Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2021.103134.
  • Sun, S. and Ertz, M. (2022). Can shared micromobility programs reduce greenhouse gas emissions: Evidence from urban transportation big data. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2022.104045.
  • Tier (2022). Segregated infrastructure: the key to micro-mobility safety and adoption. Tier. Segregated infrastructure: the key to micro-mobility safety and adoption | TIER Blog
  • Torabi, K., Araghi, Y., van Oort, N., and Hoogendoorn, S. (2022). Passengers preferences for using emerging modes as first/last mile transport to and from a multimodal hub case study Delft Campus railway station. Case Studies on Transport Policy. https://doi.org/10.1016/j.cstp.2021.12.011.
  • van Kuijk, R.J., Almeida Correia, G.H., van Oort, N., and van Arem, B. (2022). Preferences for first and last mile shared mobility between stops and activity locations: A case study of local public transport users in Utrecht, the Netherlands. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2022.10.008.
  • Younes, H. and Baiocchi, G. (2022). Analyzing the spatial determinants of dockless e-scooter & e-bike trips across four U.S. cities. International Journal of Sustainable Transportation. https://doi.org/10.1080/15568318.2022.2119623.
Annick Roetynck

Annick is the Manager of LEVA-EU, with decades of experience in two-wheeled and light electric mobility.

View all posts

Campaign success

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Member profile

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.