Micromobility

25/11/2020

10 minutes

2025
  • Fu, X., van Lierop, D., Ettema, D. (2025). Shared micromobility in multimodal travel: Evidence from three European cities. Cities. https://doi.org/10.1016/j.cities.2024.105664.
  • Hassanpour, A., and Bigazzi, A. (2025). Perceptions toward pedestrians and micromobility devices in off-street cycling facilities and multi-use paths in metropolitan Vancouver, Canada. Transportation Research Part F Traffic Psychology and Behaviour. https://doi.org/10.1016/j.trf.2025.01.021.
  • Heumann, M., Kraschewski, T., Otto, P., et al (2025). Factors influencing the usage of shared micromobility: Implications from Berlin. Journal of Cycling and Micromobility Research. https://doi.org/10.1016/j.jcmr.2025.100063.
  • Milan, P., Fah, Y., Feng, Z. et al (2025). Evaluating the safety of small-wheeled micro-mobility devices: A design-agnostic, performance-based experimental approach. Transportation Research Interdisciplinary Perspectives. https://doi.org/10.1016/j.trip.2025.101376.
  • Oeschger, G., Caulfield, B. and Carroll, P. (2025). User characteristics and preferences for micromobility use in first- and last-mile journeys in Dublin, Ireland. Travel Behaviour and Society. https://doi.org/10.1016/j.tbs.2024.100926.
  • Parnell, K.J. (2025). The gender data gap in e-micromobility research: A systematic review of gender reporting. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2025.104127.
  • Zhang, F., Lv, H., Kuai, C. (2025). Integrating user preferences and demand uncertainty in electric micro-mobility battery-swapping station planning: A data-driven three-stage model. Applied Energy. https://doi.org/10.1016/j.apenergy.2025.125713.
  • Zhang, F., Lv, H., Kuai, C., and Feng, T. (2025). The battery-swapping revolution: Exploring user preferences in electric micro-mobility sector. Transportation Research Part A Policy and Practice. https://doi.org/10.1016/j.tra.2025.104416.
  • Zhang, F., Lv, H., Liu, Y., et al (2025). Optimizing battery-swapping systems management for electric micro-mobility: A reinforcement learning approach. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2025.104450.
  • Zhu, C., Susskind, J., Chernicoff, W. et al (2025). Advancing in-neighborhood micromobility networks: Decarbonizing car-centric urbanization through a multimodal network planning framework. Cities. https://doi.org/10.1016/j.cities.2025.105858.
2024
  • Alka, T.A., Sreenivasan, A. and Suresh, M. (2024). Wheel of change: A systematic literature review on innovation and entrepreneurship in micro mobility solutions. Transport Economics and Management. https://doi.org/10.1016/j.team.2024.06.004.
  • Boamah, E.F., Miller, M., Diamond, J., Grooms, W. and Daniel Baldwin Hess (2024). The long journey to equity: A comparative policy analysis of US electric micromobility programs. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2023.103789.
  • Bobičić, O., Esztergár-Kiss, D. (2024). Enablers and barriers to micromobility adoption: Urban and suburban contexts. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2024.144346.
  • Delbosc, A. and Thigpen, C. (2024). Who uses subsidised micromobility, and why? Understanding low-income riders in three countries. Journal of Cycling and Micromobility Research. https://doi.org/10.1016/j.jcmr.2024.100016.
  • Gao, K., Jia, R., Liao, Y., Liu, Y., Najafi, A. and Attard, M. (2024). Big-data-driven approach and scalable analysis on environmental sustainability of shared micromobility from trip to city level analysis. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2024.105803.
  • Guan, X., Israel, F., Heinen, E. and Ettema, D. (2024). Satisfaction-induced travel: Do satisfying trips trigger more shared micro-mobility use? Transportation research. Part D, Transport and environment. https://doi.org/10.1016/j.trd.2024.104185.
  • Huitao Lv, Zhang, F., Wong, M., Xing, Q. and Ji, Y. (2024). Activity-Based travel chain simulation for Battery-Swapping demand of electric micromobility vehicles. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.104022.
  • International Transport Forum. (2024). https://www.itf-oecd.org/sites/default/files/docs/greener-micromobility.pdf.
  • Kuşkapan, E. (2024). An assessment of the relationship between micro-mobility use and air quality in selected cities. Urban Climate. https://doi.org/10.1016/j.uclim.2024.102180.
  • Manirathinam, T., Narayanamoorthy, S., Geetha, S., Ahmadian, A., et al. (2024). Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.140372.
  • Rosario, L.D., Wu, H., Lee, J.B., Roberts, L., Arnold, T., Mathur, S. and Pettit, C. (2024). Assessing the monetary value of active transport and e-micromobility: A systematic review. Transportation Research Interdisciplinary Perspectives. https://doi.org/10.1016/j.trip.2024.101243.
  • Sanchez, N.C. and Larson, K. (2024). Shared autonomous micro-mobility for walkable cities. Transportation Research Interdisciplinary Perspectives. https://doi.org/10.1016/j.trip.2024.101236.
  • Shen, Y., Song, Y., Yu, Q., Luo, K., Shi, Z. and Chen, X. (2024). Enhancing carbon efficiency in shared micro-mobility systems: An agent-based fleet size and layout assessment approach. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2024.141209.
  • Zhang, F., Lyu, H., Xing, Q. and Ji, Y. (2024). Deployment of battery-swapping stations: Integrating travel chain simulation and multi-objective optimization for delivery electric micromobility vehicles. Energy. https://doi.org/10.1016/j.energy.2024.130252.
2023
  • Bretones, A., and Marquet, O. (2023). Riding to health: Investigating the relationship between micromobility use and objective physical activity in Barcelona adults. Journal of Transport & Health. https://doi.org/10.1016/j.jth.2023.101588.
  • Cubells, J., Miralles-Guasch, C., and Marquet, O. (2023). Gendered travel behaviour in micromobility? Travel speed and route choice through the lens of intersecting identities. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2022.103502.
  • Diallo, A.O., Gloriot, T. and Manout, O. (2023). Agent-based simulation of shared bikes and e-scooters: the case of Lyon. Procedia Computer Science. https://doi.org/10.1016/j.procs.2023.03.047
  • Ecer, F., Küçükönder, H., Kayapınar Kaya, S. and Faruk Görçün, Ö. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2023.103667
  • Ghaffar, A., Hyland, M. and Saphores, J.-D. (2023). Meta-analysis of shared micromobility ridership determinants. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.103847.
  • Hong, D., Jang, S., and Lee, C. (2023). Investigation of shared micromobility preference for last-mile travel on shared parking lots in city center. Travel Behaviour and Society. https://doi.org/10.1016/j.tbs.2022.09.002.
  • Olabi, A.G., Wilberforce, T., Obaideen, K., et al. (2023). Micromobility: progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals. International Journal of Thermofluids. https://doi.org/10.1016/j.ijft.2023.100292.
  • Schumann, H., Haitao, H., Quddus, M (2023). Passively generated big data for micro-mobility: State-of-the-art and future research directions. Science Direct. https://doi.org/10.1016/j.trd.2023.103795
  • Zhang, C., Du,B., Zheng, Z., and Shen, J. (2023). Space sharing between pedestrians and micro-mobility vehicles: A systematic review. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2023.103629.
  • Zhang, F., Lyu, H., Ji, Y., Wong, M., Kuai, C. and Fan, J. (2023). Battery swapping demand simulation for electric micromobility vehicles considering multi-source information interaction and behavior decision. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137525.
  • Zhang, Y., Zhang, F., Ji, Y., Liu, Y. (2023). Understanding the illegal charging intention of electric micro-mobility vehicle users by extending the theory of planned behavior. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137491.
  • Zhang, Y., Zhang, F., Ji, Y. and Liu, Y. (2023). Understanding the illegal charging intention of electric micro-mobility vehicle users by extending the theory of planned behavior. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.137491  
2022
  • Adjei, F., Cimador, T., Severengiz, S. (2022). Electrically powered micro mobility vehicles in Ghana: transition process with a focus on social acceptance. Procedia CIRP. https://doi.org/10.1016/j.procir.2022.02.127.
  • Altintasi, O., and Yalcinkaya, S. (2022). Siting charging stations and identifying safe and convenient routes for environmentally sustainable e-scooter systems. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2022.104020.
  • Asensio, O.I., Apablaza, C.Z., Cade Lawson, M., Chen, E.W., and Horner, S.J. (2022). Impacts of micromobility on car displacement with evidence from a natural experiment and geofencing policy. Nature Energy. https://doi.org/10.1038/s41560-022-01135-1.
  • Bretones, A., and Marquet, O. (2022). Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review. Transport Policy. https://doi.org/10.1016/j.tranpol.2022.09.008.
  • Chicco, A. and Diana, M. (2022). Understanding micro-mobility usage patterns: a preliminary comparison between dockless bike sharing and e-scooters in the city of Turin (Italy). Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2022.02.057.
  • Dozza, M., Li, T., Billstein, L., Svernlöv, C., and Rasch, A. (2022). How do different micro-mobility vehicles affect longitudinal control? Results from a field experiment. Journal of Safety Research. https://doi.org/10.1016/j.jsr.2022.10.005.
  • Ignaccolo, M., Inturri, G., Cocuzza, E. et al. (2022). Developing micromobility in urban areas: network planning criteria for e-scooters and electric micromobility devices. Transportation Research Procedia. https://doi.org/10.1016/j.trpro.2021.12.058.
  • Jiao, J., Lee, H.K., and Choi, S.J. (2022). Impacts of COVID-19 on bike-sharing usages in Seoul, South Korea. Cities. https://doi.org/10.1016/j.cities.2022.103849.
  • Li, H., Yuan, Z., Novack, T., Huang, W., and Zipf, A. (2022). Understanding spatiotemporal trip purposes of urban micro-mobility from the lens of dockless e-scooter sharing. Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2022.101848.
  • Liu, H-C., Lin, J-J. (2022). Associations of built environments with spatiotemporal patterns of shared scooter use: A comparison with shared bike use. Transport Policy. https://doi.org/10.1016/j.tranpol.2022.07.012.
  • Liu, L., and Miller, H.J. (2022). Measuring the impacts of dockless micro-mobility services on public transit accessibility. Computers, Environment and Urban Systems. https://doi.org/10.1016/j.compenvurbsys.2022.101885.
  • Lu, F., Yan, L., and Huang, B. (2022). Site selection for shared charging and swapping stations using the SECA and TRUST methods. Energy Reports. https://doi.org/10.1016/j.egyr.2022.10.378.
  • Medina-Molina, C., Pérez-Macías, N., and Gismera-Tierno, L. (2022). The multi-level perspective and micromobility services. Journal of Innovation & Knowledge. https://doi.org/10.1016/j.jik.2022.100183.
  • Orozco-Fontalvo, M., Llerena, L. and Cantillo, V. (2022). Dockless electric scooters: A review of a growing micromobility mode. International Journal of Sustainable Transportation. https://doi.org/10.1080/15568318.2022.2044097.
  • Reck, J. D., Martin, H., and Axhausen, K. W. (2022). Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2021.103134.
  • Sun, S. and Ertz, M. (2022). Can shared micromobility programs reduce greenhouse gas emissions: Evidence from urban transportation big data. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2022.104045.
  • Tier (2022). Segregated infrastructure: the key to micro-mobility safety and adoption. Tier. Segregated infrastructure: the key to micro-mobility safety and adoption | TIER Blog
  • Torabi, K., Araghi, Y., van Oort, N., and Hoogendoorn, S. (2022). Passengers preferences for using emerging modes as first/last mile transport to and from a multimodal hub case study Delft Campus railway station. Case Studies on Transport Policy. https://doi.org/10.1016/j.cstp.2021.12.011.
  • van Kuijk, R.J., Almeida Correia, G.H., van Oort, N., and van Arem, B. (2022). Preferences for first and last mile shared mobility between stops and activity locations: A case study of local public transport users in Utrecht, the Netherlands. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2022.10.008.
  • Younes, H. and Baiocchi, G. (2022). Analyzing the spatial determinants of dockless e-scooter & e-bike trips across four U.S. cities. International Journal of Sustainable Transportation. https://doi.org/10.1080/15568318.2022.2119623.
2021
2020
Annick Roetynck

Annick is the Manager of LEVA-EU, with decades of experience in two-wheeled and light electric mobility.

View all posts